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Abstract— This paper addresses the one-bit consensus
of controllable linear multi-agent systems (MASs) with com-
munication noises. A consensus algorithm consisting of
a communication protocol and a consensus controller is
designed. The communication protocol introduces a linear
compression encoding function to achieve a one-bit data
rate, thereby saving communication costs. The consensus
controller with a stabilization term and a consensus term is
proposed to ensure the consensus of a potentially unstable
but controllable MAS. Specifically, in the consensus term,
we adopt an estimation method to overcome the informa-
tion loss caused by one-bit communications and a decay
step to attenuate the effect of communication noise. Two
combined Lyapunov functions are constructed to overcome
the difficulty arising from the coupling of the control and
estimation. By establishing similar iterative structures of
these two functions, this paper shows that the MAS can
achieve consensus in the mean square sense at the rate
of the reciprocal of the iteration number under the case
with a connected fixed topology. Moreover, the theoretical
results are generalized to the case with jointly connected
Markovian switching topologies by establishing a certain
equivalence relationship between the Markovian switching
topologies and a fixed topology. Two simulation examples
are given to validate the algorithm.

Index Terms— consensus, one-bit data rate, communica-
tion noise, controllable linear MASs, Markovian switching
topologies
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A. Background and motivation

OVER the past two decades, the consensus control of
multi-agent systems (MASs) has been playing an in-

creasingly important role in various fields, including engi-
neering, communication, and biology. For example, in the
engineering field, consensus control plays a crucial role in ap-
plications such as attitude alignment of satellites, rendezvous
in space, and cooperative control of unmanned aerial vehicles
[1]–[3]. In the communication field, it has been applied to
problems like reputation consensus among mobile nodes [4]
and load balancing in internet data centers [5]. In the biology
field, consensus mechanisms are essential in understanding
phenomena such as the aggregation behavior of animals [6]
and the synchronous firing of biological oscillators [7].

With the increasing application of the consensus control
across various fields, theoretical research on this topic has
expanded significantly, such as [8]–[20]. Consensus controllers
are typically formulated as the sum of the state differences
between an agent and its neighbors, with the addition of a step
coefficient. According to existing literature, the choice of the
step coefficient usually depends on the MAS and significantly
impacts the consensus rate. A constant step coefficient is
often used to stabilize unstable systems [8]–[12]. Meanwhile,
a decay step coefficient is commonly employed to attenuate
the impact of noises, which is a widely adopted method in
practice [13]–[20].

Due to the advantages of low communication costs and
robustness, digital signals have become mainstream. It is
known that data communication generally consumes signifi-
cantly more energy and incurs higher costs compared to data
processing [21]. These two factors make finite-bit data trans-
mission between agents preferable and prevalent. Motivated by
the advantages and challenges associated with finite-bit data,
consensus control with finite-bit communications has attracted
increasing attention in various fields.

B. Related literature

In fact, significant research has been conducted on the
consensus control of MASs with finite-bit communications.
Quantizer plays a crucial role in converting accurate communi-
cations into finite-bit communications in practical applications.
Consequently, numerous studies have investigated consensus
control using different quantizers, such as integer quantiz-
ers, logarithmic quantizers, uniform quantizers, binary-valued
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quantizers, and others. For example, Kashyap et al. in [22] and
Chamie et al. in [23] considered the consensus control with in-
teger quantized communications. Carli et al. in [24] introduced
a logarithmic quantizer in the consensus control to improve the
control performance. Li et al. in [25] proved that the MAS can
achieve consensus with finite bits under a uniform quantizer
in the noise-free case. Meng et al. in [26] extended [25] into a
high-order system. Moreover, due to the significant reduction
in communication costs offered by the binary-valued quantizer,
the consensus control based on binary-valued communications
has gained considerable research attention [27]–[30]. To be
specific, Zhao et al. in [27] constructed a two-time-scale
consensus algorithm and proved that the MAS can achieve
mean square consensus with communication noises. Wang et
al. in [28] proposed a consensus algorithm based on a recursive
projection identification algorithm and obtained a mean square
consensus rate, faster than that given by [27]. Wang et al.
in [29] and An et al. in [30] extended the system of [28]
to the high-order MAS under fixed and switching topologies,
respectively. It is worth noting that the number of bits required
for communication in the above consensus control depends
not only on the choice of quantizer but also on the dimension
of the agent’s state. This implies that a one-bit data rate can
be achieved only in first-order systems with binary-valued
communications, as shown in [27]-[28], but the one-bit data
rate cannot be achieved in [22]–[26], [29], [30].

In a communication network, the connectivity between
agents significantly impacts the system’s cooperation effec-
tiveness. Most existing consensus research focuses on the fixed
topology (such as [22]–[25], [27], [28]), while only a small
portion addresses simpler cases with the switching topolo-
gies. Even for the switching topologies, certain restrictions
remain. For example, the communication network is assumed
to be periodically connected in [31] and [32], and modeled
as an i.i.d. process in [30] and [33]. However, in practical
applications, factors such as packet dropouts, environmental
dynamics, link failures, and high-level scheduling commands
lead to network topologies that switch with inherent correla-
tions. Consequently, it becomes essential to model topology
switching as a Markov process, which effectively captures
the inherent correlations. Therefore, there is a need to study
consensus control with finite-bit communications under both
fixed topology and Markovian switching topologies.

C. Main contribution

In this paper, we consider the one-bit consensus of control-
lable linear MASs with communication noises for both fixed
topology and Markovian switching topology cases. The main
contributions of this paper are as follows:

• The system model studied in this paper is the most
general linear system model of consensus control with
finite-bit communications, requiring only controllability.
Compared with previous studies of consensus with finite-
bit communications [29]–[30], this paper removes the
strict constraints of orthogonality and full row rank of the
coefficient matrices, greatly expanding the applicability
of the system model. Besides, this paper realizes the

control of a high-order system with a first-order input,
which simplifies the control process. To the best of the
author’s knowledge, it is the first consensus study on
high-order systems under one-bit communications.

• A consensus algorithm consisting of a communication
protocol and a consensus controller is proposed to achieve
consensus with one-bit communications. In the communi-
cation protocol, a linear compression encoding function is
introduced to compress state vectors into scalars, achiev-
ing a one-bit data rate and reducing communication costs
compared to [26], [29], [30]. The consensus controller in-
cludes a stabilization term to ensure the stability of MASs
and a consensus term with a decay step to attenuate the
effect of stochastic communication noises. To overcome
the information loss caused by the one-bit data rate, an
estimation method is used in the consensus term to infer
the neighbors’ states from one-bit communications.

• The consensus properties of the proposed one-bit consen-
sus algorithm are established under the connected fixed
topology case. Two combined Lyapunov functions are
constructed to overcome the difficulty arising from the
coupling of the control and estimation. By establishing
similar iterative structures of these two functions, this
paper shows that the compressed states of MAS achieve
consensus at a rate of O( 1t ). Through establishing the
consensus equivalence between the original and com-
pressed states, it is shown that the MAS can achieve
consensus in the mean square sense at a rate of O( 1t ).

• The theoretical results are generalized to the case with
jointly connected Markovian switching topologies by
establishing a certain equivalence relationship between
the Markovian switching topologies and a fixed topology.
To be specific, the MAS can also achieve consensus in the
mean square sense at a rate of O( 1t ) under jointly con-
nected Markovian switching topologies with appropriate
step coefficients of estimation and controller. It is worth
noting that the step coefficients depend on the switching
probability of the Markovian switching topologies.

The remainder of this paper is organized as follows: Section
II gives the preliminaries of basic concepts and graph theory
and describes the consensus problem. Section III introduces
the consensus algorithm. The main results of this paper are
presented in Section IV, which includes the main convergence
and consensus results. Section V generalizes the theoretical
results in Section IV to Markovian switching topologies.
Section VI gives two simulation examples for the fixed and
switching topology cases. Section VII is the summary and
prospect of this paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first give some basic concepts in matrix
and graph theory, and subsequently formulate the system
model and the consensus problems investigated in this paper.

A. Basic concept
Let R denote the set of real numbers, and N denote the

set of natural numbers. We use x ∈ Rn and A ∈ Rn×m to
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denote n-dimensional column vector and n ×m-dimensional
real matrix, respectively. Denote 0⃗m = [0, . . . , 0]T ∈ Rm and
1⃗m = [1, . . . , 1]T ∈ Rm, where the notation T denotes the
transpose operator. Denote |a| as the absolute value of a scalar.
Moreover, we denote ∥x∥ = ∥x∥2 and ∥A∥ =

√
λmax(ATA)

as the Euclidean norm of vector and matrix, respectively,
where λmax(·) denotes the largest eigenvalue of the matrix.
Correspondingly, λmin(·) denotes the smallest eigenvalue of
the matrix. For symmetric matrices A ∈ Rm×m and B ∈
Rm×m, A ≥ B represents that A − B is a positive semi-
definite matrix. diag{·} denotes the block-diagonal matrix.
And, for arbitrary matrices A = [aij ] ∈ Rm×n and B ∈ Rp×q ,
the Kronecker product of A and B is defined as

A⊗B ≜


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
am1B am2B · · · amnB

 ∈ Rmp×nq.

In addition, the mathematical expectation is denoted as E[·].
D denotes the one-step forward operator, i.e., let x(k) be a
sequence of variables, then Dx(k) = x(k + 1).

B. Graph theory

To describe the relation between agents, we introduce an
undirected topology G = (N0, E), where N0 = {1, . . . , N}
is the set of agents, and E ⊆ N0 × N0 is the ordered edges
set of the topology G. Denote Ni as the neighbor set of the
agent i in the topology G. Denote the adjacency matrix of
the N agents as AG, where each element of the matrix AG

satisfies aij = aji = 1 if (i, j) ∈ E, else aij = 0. Denote the
degree matrix of G as D, where D = diag{d1, d2, . . . , dN}
and di is the degree of agent i. Denote the Laplace matrix
of G as L = D − AG. Denote dmax = max1≤i≤N di
and d =

∑N
i=1 di. An undirected graph G is said to be

connected if there exists a path between every pair of agents
in G; otherwise, G is disconnected. If G is connected, then
there exists an orthogonal matrix TG such that T−1

G LTG =
diag{λ1, . . . , λN}, where 0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λN are
the eigenvalues of the Laplacian matrix L.

C. Problem formulation

Consider the following MAS with N agents at time t:

xi(t+ 1) = Axi(t) +Bui(t), i ∈ N0, (1)

where A ∈ Rn×n and B ∈ Rn are constant matrices, xi(t) =
[xi1(t), . . . , xin(t)]

T ∈ Rn is the state of the agent i at time
t, and ui(t) ∈ R is the control input of the agent i at time t.

Agent i receives one-bit information sij(t) affected by
communication noise from its neighbor j:

sij(t) = 1{g(xj(t))+dij(t)≤cij}, (2)

where the agent j is the neighbor of the agent i at time t,
g(·) : Rn → R is a compression encoding function to be
designed, dij(t) ∈ R is the communicating noise, cij ∈ R is
the threshold value, sij(t) is the one-bit information that the

agent i collects from its neighbor j, 1{a≤c} is the indicator
function defined as:

1{a≤c} =

{
1, a ≤ c,

0, a > c.

Remark 1: The compression encoding function g(·) is a
common tool to save communication costs in the commu-
nication field [34]–[36], as it provides savings of scarce
network resources such as communication bandwidth, trans-
mit/processing power, and storage. In contrast with [26],
[29], [30], the compression encoding function g(·) maps n-
dimensional vectors to scalars to realize one-bit data rate
communication, but agents in [26], [29], [30] need to transmit
finite-bit data depending on the dimension of states.

To proceed with our analysis, we introduce two assumptions
about the system model and the communication noises.

Assumption 1: The linear system (A,B) is controllable.
Assumption 2: The noises {dij(t), i, j ∈ N0, t ∈ N} are

independent and identically distributed as N(0, δ2) for indices
i, j and time t, with known distribution function F (·) and
density function f(·).

Assumption 3: The topology graph G is connected.
Remark 2: Compared with the existing consensus works

based on finite-bit communications, the condition of the
system model in this paper is the weakest, requiring only
controllability, as stated in Assumption 1. To be specific, in
[26], besides the requirement of controllability for (A,B),
there were restrictions on the eigenvalues of the coefficient
matrix A. In [29], orthogonality constraints on the coefficient
matrices were required. In [30], the system model is assumed
to be neutrally stable.

Definition 1: ( [37, Definition 3] Mean square consensus).
The agents’ states xi(t) are said to achieve mean square
consensus if E[∥xi(t)∥2] < ∞, t ≥ 0, i ∈ N0, and there exists
a random variable x∗ such that limt→∞ E[∥xi(t)−x∗∥2] = 0
for all i ∈ N0.

Problem: The goal of this paper is to design a consensus
algorithm comprising a controller ui(t) and a communication
mechanism g(·) based on one-bit communications sij(t) to
achieve consensus of the controllable MAS (1)-(2).

III. ALGORITHM DESIGN

This section focuses on designing a consensus algorithm
that enables linear systems to reach a consensus with commu-
nication noises and a one-bit data rate constraint.

To simplify the design of the algorithm, this paper considers
the MAS (1)-(2) in the Brunovsky canonical form, where

A = Ã ≜


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
a1 a2 · · · an

 ∈ Rn×n, B = B̃ ≜


0
...
0
1

 ∈ Rn.

(3)
It can be seen that for any controllable system (1), there

exists a nonsingular matrix P that can transform (1) into this
Brunovsky canonical form [38], i.e., PAP−1 = Ã and PB =
B̃. Let x̃i(t) = Pxi(t). Then, (1) is transformed into x̃i(t +
1) = Ãx̃i(t) + B̃ui(t), which is equivalent to (1)-(3).
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Next, we introduce the design idea of the consensus algo-
rithm. To achieve one-bit consensus for general controllable
systems, this paper proposes an integrated algorithm consisting
of a communication protocol and a consensus controller. On
the one hand, to enable one-bit communication for high-
order systems, a linear compression-based communication
protocol is designed to efficiently compress each agent’s high-
dimensional state vector into a scalar value. On the other hand,
to address the state unknown caused by one-bit communica-
tion, a consensus controller incorporating both estimation and
control is developed.

Based on the above idea, we propose a one-bit consensus
algorithm involving both a communication protocol and a
consensus controller in Algorithm 1.

Algorithm 1 One-bit consensus algorithm
Initiation: Denote the integer t0(> 0) as the initial time.
xi(t0 + 1) = x0

i is the initial state of the agent i, ẑij(t0) =
ẑ0ij is the initial estimate of the agent j estimated by the
agent i. Then, for t ≥ t0 + 1, the algorithm is as follows.
Step 1: Communication protocol:
Denote the compression encoding function

g(xj(t)) = K2xj(t),

where K2 = [b1, b2, . . . , bn−1, 1] ∈ R1×n, where b1,
b2, . . ., bn−1 are the compression coefficients to be de-
signed. Then, the one-bit communcation (2) is sij(t) =
1{K2xj(t)+dij(t)≤cij}.
Step 2: Consensus controller:
Step 2.1 Estimation: each agent i estimates the compressed
state K2xj(t) of its neighbor agent j at time t by

ẑij(t) = ΠM

{
ẑij(t−1)+

β

t

(
F
(
cij−ẑij(t−1)

)
−sij(t)

)}
,

(4)
where j ∈ Ni, β is the step coefficient for estimation
updating, F (·) is the distribution function of noise dij(t),
ΠM (·) is a projection mapping defined as

ΠM (ζ) = argmin
|ξ|≤M

|ζ − ξ|,∀ζ ∈ R, (5)

where M = maxi∈N0,j∈Ni
{|K2x

0
i |, |ẑ0ij |}.

Step 2.2 Control: based on these estimates, each agent i
designs its control by

ui(t) = K1xi(t) +
γdi
t+ 1

∑
j∈Ni

(
ẑij(t)−K2xi(t)

)
, (6)

where K1 = [−a1+b1,−a2+b2−b1, . . . ,−an−1+bn−1−
bn−2,−an−bn−1+1] ∈ R1×n and γ is the step coefficient
of the control that needs to be designed.

Remark 3: For the communication protocol, the compres-
sion encoding function saves communication costs, but it
complicates the recovery of the original states xj(t) from the
compressed states K2xj(t). Noting that the linear compression
encoding function K2xj(t) is irreversible, the key issue to be
explored is how to design the linear compression coefficient
K2 to ensure the equivalence between the consensus of origi-
nal and compressed states, thereby achieving consensus of the
original states through the consensus of the compressed states.

This design problem of K2 and its theoretical justification will
be addressed and rigorously proved in Section IV-B.

Remark 4: The estimation-control type consensus con-
troller, consisting of the estimation part (4) and the control part
(6), is designed to handle the unknown state caused by one-bit
communication. Specifically, the estimation part (4) is used to
reconstruct the neighbors’ compressed states K2xj(t) based
on the received one-bit data sij(t), and the control part (6)
is designed to achieve consensus for controllable MASs under
communication noise. The control part includes a stabilization
term to address system instability and a consensus term with a
decaying step to attenuate the effect of stochastic communica-
tion noise. Besides, the upper bound M in the estimation step
only requires M to exceed maxi∈N0, j∈Ni

{
|K2x

0
i |, |ẑ0ij |

}
,

without requiring exact equality.
Remark 5: Algorithm 1 is applicable to not only the

Brunovsky canonical form but also general controllable sys-
tems, which requires only a transformation in the control
gain K1 and compression coefficient K2. Specifically, K1P
and K2P are used as the control gain and the compression
coefficient for general controllable systems, where P is the
transformation matrix for the Brunovsky canonical form. Be-
sides, control gains K1 and K2 designed in Algorithm 1 satisfy

K2(A+BK1) = K2 and K2B = 1.
Remark 6: The proposed algorithm trades a small amount

of local computation and memory for a substantial reduction
in overall communication costs, compared to previous works
(e.g., [8]–[20], [22]–[26], [29], [30]). Specifically, the com-
putational and storage complexities required by the proposed
estimation algorithm are both low, with the former being
approximately 8-9 flops per neighbor per time step and the
latter requiring only one scalar per neighbor. Meanwhile, the
communication cost is significantly reduced to just one bit per
unit time for each neighbor.

IV. MAIN RESLUTS

In this section, we demonstrate that all agents can reach
consensus and provide the corresponding consensus rate.

At first, we analyze the consensus property of the com-
pressed states and the convergence property of their estimates.
Then, the equivalence between the consensus of the com-
pressed and original states is established. Finally, the consen-
sus of the original states and the corresponding consensus rate
are obtained.

A. Properties of compressed states and their estimates
For the convenience of the subsequent analysis, we rewrite

the estimation and update formulas in vector form based on
the fixed topology G.

Firstly, define x(t) = [xT
1 (t), x

T
2 (t), . . . , x

T
N (t)]T ∈ RnN .

Let ẑ(t) = [. . . , ẑij(t), . . .]
T ∈ Rd denote the stacking of

all ẑij(t), arranged in lexicographic order of (i, j) ∈ E, i.e.,
sorted first by the index i and then by j when i is the same.
The same ordering is used for s(t) = [. . . , sij(t), . . .]

T ∈ Rd

and C = [. . . , cij(t), . . .]
T ∈ Rd.

Then, we construct two matrices to establish the relation
between agents’ compressed states and their estimates.
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Q is designed to select the true compressed state corre-
sponding to its estimate. Define Q = [. . . , Qij , . . .]

T ∈ Rd×N

in lexicographic order of (i, j) ∈ E, where Qij = e⃗j ∈ RN ,
e⃗j is the j-th canonical vector with a 1 in the j-th position
and 0 elsewhere.

W is designed to select the neighbor set of each agent.
Define W = [. . . ,Wij , . . .] ∈ RN×d in lexicographic order of
(i, j) ∈ E, where Wij = e⃗i ∈ RN .

Based on the above matrices, the vector forms of estimation
and update are given as follows:

1.Estimation:

ẑ(t) =ΠM

{
ẑ(t− 1) +

β

t

(
F(C − ẑ(t− 1))− s(t)

)}
,

where ΠM (z) = [ΠM (z1), . . . ,ΠM (zd)]
T , F(z) = [F (z1),

. . . , F (zd)]
T , for any z = [z1, z2, . . . , zd]

T ∈ Rd.
2.Update:

x(t) =
(
IN ⊗ (A+BK1)−

γ

t
L⊗BK2

)
x(t− 1)

+
γ

t
(W ⊗B)ε̂(t),

where ε̂(t) = ẑ(t) − (Q ⊗K2)x(t) is the estimation error of
the compressed state (IN ⊗K2)x(t).

As a preparatory step for analyzing consensus and esti-
mation convergence, we provide the following lemma on the
boundedness of the compressed states and their estimates.

Lemma 1: Under Assumptions 1-3 and Algorithm 1, the
compressed states K2xi(t) and their estimates ẑij(t) are all
bounded for all t ≥ t0 + 1, i.e.,

|K2xi(t)| ≤ M and |ẑij(t)| ≤ M,

where M is defined as (4), i ∈ N0, j ∈ Ni.
Proof: First, due to the definition of M , we can get

|K2x
0
i | ≤ M, |z0ij | ≤ M . By (4) and (5), we have |ẑij(t)| ≤ M

for t ≥ t0 + 1.
Next, we prove the boundedness of the compressed state

K2xi(t) by mathematical induction.
Base case: For t = t0, there is |K2x

0
i | ≤ M .

Inductive step: We show that if |K2xi(t)| ≤ M holds for
an arbitrary t ≥ t0, then it holds for t+ 1.

Assume that |K2xi(t)| ≤ M , then by the system model (1),
control (6), and properties of K1,K2 in Remark 5, we have

|K2xi(t+ 1)|

=
∣∣∣K2(A+BK1)xi(t) +

γK2B

t+ 1

∑
j∈Ni

(
ẑij(t)−K2xi(t)

)∣∣∣
=
∣∣∣K2xi(t) +

γ

t+ 1

∑
j∈Ni

(ẑij(t)−K2xi(t))
∣∣∣.

=
∣∣∣ (1− diγ

t+ 1

)
K2xi(t) +

γ

t+ 1

∑
j∈Ni

ẑij(t)
∣∣∣.

≤
∣∣∣1− γdi

t+ 1

∣∣∣M +
γdi
t+ 1

M

Without loss of generality, we assume that t0 ≥ γdmax− 1.
Then, we have γdi

t+1 < γdmax

t0+1 ≤ 1. Furthermore, by 1− γdi

t+1 +
γdi

t+1 = 1, we can get

|K2xi(t+ 1)| ≤
∣∣∣1− γdi

t+ 1

∣∣∣M +
γdi
t+ 1

M = M.

Thus, by mathematical induction, we have |K2xi(t)| ≤ M
for all t ≥ t0 + 1. The lemma is proved.

Remark 7: The assumption t0 ≥ γdmax − 1 used in the
proof is made without loss of generality, as it can always be
satisfied by adjusting the step size γ

t+1 of the consensus term
in (6). Specifically, when t0 < γdmax − 1, we can simply
modify the step from γ

t+1 to γ
t+tγ

, where tγ = γdmax. This
modification ensures that γ

t+tγ
≤ 1

dmax
holds for all t ≥ t0,

which is sufficient for the boundedness analysis. Since tγ is
a constant independent of the initial time t0, this change has
no impact on the consensus properties.

Next, due to the coupling relationship between the control
and estimation process, we introduce two Lyapunov functions,
V (t) and R(t), to jointly analyze the consensus of the com-
pressed states and the convergence of their estimates. These
functions are defined as follows:

V (t) = E[∥(T−1
G ⊗K2)δ(t)∥2],

R(t) = E[∥ε̂(t)∥2],

where δ(t) = (JN ⊗ In)x(t) and JN = IN − 1
N 1⃗N 1⃗TN , TG

is defined in Section II-B. Then, the following two lemmas
show the coupled expressions of the two Lyapunov functions.

Lemma 2: Under Assumptions 1-3, V (t) satisfies

V (t) ≤
(
1− γλ2

t

)
V (t− 1) +

γλG

tλ2
R(t− 1) +O

( 1

t2

)
,

where λG = ∥JNW∥2.
Proof: See Appendix I-A.

Lemma 3: Under Assumptions 1-3, R(t) satisfies

R(t) ≤
(
1− 2βfM − γα

t

)
R(t− 1) +

γλG

tλ2
V (t− 1) +O

( 1

t2

)
,

where α = 2
√
λQW +λQLλ2/λG, fM = mini,j∈N0

{f(|cij |+
M)}, λQW = ∥QW∥2, and λQL = ∥QLTG∥2.

Proof: See Appendix I-B.
To establish the convergence properties of these two coupled

functions V (t) and R(t), denote a new function Z(t) =
(V (t), R(t))T . Then, under Assumptions 1-3, we have

∥Z(t)∥ ≤ ∥(I − 1

t
U)Z(t− 1)∥+O

( 1

t2

)
,

where U =

[
u1 u2

u2 u4

]
, u1 = γλ2, u2 = γλG/λ2, u4 =

2βfM −γα, α is the same as in Lemma 3. Since 0 ≤ V (t) ≤
∥Z(t)∥ and 0 ≤ R(t) ≤ ∥Z(t)∥, the analysis of V (t) and R(t)
can be transformed into analyzing the convergence of Z(t).

Then, the following theorem is established to show the
consensus properties of the compressed states.

Theorem 1: Under Assumptions 1-3, the compressed states
K2xj(t) and their estimates ẑij(t) satisfy:

i) If β > 1
2fM

(
γλ2

G

λ3
2
+γα), the compressed states reach con-

sensus and their estimates converge to the real compressed
states, i.e., for i ∈ N0, j ∈ Ni,

lim
t→∞

E[∥K2xi(t)−K2x̄(t)∥2] = 0,

lim
t→∞

E[∥ẑij(t)−K2xj(t)∥2] = 0;
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ii) If β > 1
2fM

(
γ2λ2

G

λ2
2(γλ2−1)

+ γα + 1) and γ > 1
λ2

, the
compressed states reach consensus at the rate of O( 1t ),
and their estimates converge to the real compressed states
at the rate of O( 1t ), i.e., for i ∈ N0, j ∈ Ni,

E[∥K2xi(t)−K2x̄(t)∥2] = O
(1
t

)
,

E[∥ẑij(t)−K2xj(t)∥2] = O
(1
t

)
,

where x̄(t) = 1
N

∑N
i=1 xi(t).

Proof: i) By [33, Theorem 1], we have

∥Z(t)∥ =


O
(

1
tλmin(U)

)
, λmin(U) < 1;

O
(
ln t
t

)
, λmin(U) = 1;

O
(
1
t

)
, λmin(U) > 1.

(7)

Let |λI2−U | = λ2− (u1−u4)
2+4u2

2 = 0. Then, we have

λmin(U) =
1

2

(
u1 + u4 −

√
(u1 + u4)2 − 4(u1u4 − u2

2)
)
.

If β > 1
2fM

(
γλ2

G

λ3
2

+ γα), then u1u4 > u2
2. Since u1 > 0

and u1u4 > u2
2, we have λmin(U) > 0. Then, we can obatin

that limt→∞ ∥Z(t)∥ = 0 by Equation (7). Hence, due to 0 ≤
V (t), R(t) ≤ ∥Z(t)∥, it is clearly that

lim
t→∞

V (t) = 0, lim
t→∞

R(t) = 0,

which is equivalent to limt→∞ E[∥(T−1
G ⊗ K2)δ(t)∥2] = 0

and limt→∞ E[∥ε̂(t)∥2] = 0.
Subsequently, there is limt→∞ E[∥IN ⊗ K2)δ(t)∥2] = 0,

which implies that limt→∞ E[∥K2δi(t)∥2] = 0 for i ∈ N0.
Therefore, we have that for i ∈ N0, j ∈ Ni,

lim
t→∞

E[∥K2xi(t)−K2x̄(t)∥2] = 0,

lim
t→∞

E[∥ẑij(t)−K2xj(t)∥2] = 0.

ii) Similarly, if β > 1
2fM

(
γ2λ2

G

λ2
2(γλ2−1)

+ γα+ 1), then

u2
2

u1 − 1
+ 1 < u4.

If γ > 1
λ2

, we have u1 = γλ2 > 1, then

u2
2 + u1 − 1 < u4(u1 − 1).

Subsequently, since (u1+u4)
2−4(u1u4−u2

2)−(u1+u4−
2)2 = 4(u2

2 + u1 − 1− u4(u1 − 1)) < 0, we have

u1 + u4 −
√
(u1 + u4)2 − 4(u1u4 − u2

2) > 2,

then λmin(U) > 1.
By Equation (7), we have ∥Z(t)∥ = O( 1t ), i.e.,

V (t) = O

(
1

t

)
, R(t) = O

(
1

t

)
.

Similarly to the proof of Part i), we have

E[∥K2xi(t)−K2x̄(t)∥2] = O
(1
t

)
,

E[∥ẑij(t)−K2xj(t)∥2] = O
(1
t

)
.

where i ∈ N0, j ∈ Ni.

B. Consensus of the original states

In order to establish the equivalence of the consensus of
the agent states before and after compression, we need the
compression coefficients to satisfy the following condition.

Assumption 4: The compression coefficients b1, b2, . . . ,
bn−1 satisfy that: All the roots r1, r2, . . . , rn−1 of sn−1 +
bn−1s

n−2 + · · ·+ b2s+ b1 = 0 are inside the unit circle.
Remark 8: Assumption 4 provides a method for designing

the compression coefficient K2 that guarantees the equivalence
between the consensus of the compressed states K2xi(t)
and that of the original states xi(t). Specifically, Assump-
tion 4 essentially serves as the minimum-phase condition of
B(s) = sn−1 + bn−1s

n−2 + · · · + b2s + b1. This ensures
that, for the dynamic equation η(t) = B(s)ξ(t) with B(s)
as its coefficient, the convergence of η(t) guarantees the
convergence of ξ(t), where s is the one-step forward operator.
Therefore, once it can be shown that the compressed state
and the original state satisfy the above dynamic equation,
the compression-coefficient condition given in Assumption 4
ensures the equivalence of consensus between the compressed
state and the original state.

The following two lemmas respectively present the dynamic
relationship between the compressed state and the original
state, and the equivalence of consensus between the variables
in a dynamic equation whose coefficients satisfy the condition
in Assumption 4.

Lemma 4: The linear systems (1) with Brunovsky canonical
form (3) satisfies

Dn−1xin(t)+bn−1D
n−2xin(t)+· · ·+b1xin(t) = D

n−1K2xi(t),

where xi(t) = [xi1(t), . . . , xin(t)]
T ∈ Rn and i ∈ N0.

Proof: See Appendix II-A.
Lemma 5: Consider the stochastic process ξ(t) ∈ R that

satisfies the following stochastic difference equation:

Dn−1ξ(t) + bn−1D
n−2ξ(t) + · · ·+ b2Dξ(t) + b1ξ(t) = η(t),

where η(t) ∈ R is a stochastic process which converges to a
finite-second-moment random variable η∗ in the mean square.
Under Assumption 4,

i) limk→∞ E[|ξ(t)− ξ∗|2] = 0;
ii) If E[|η(t)− η∗|2] = O( 1t ), then E[|ξ(t)− ξ∗|2] = O( 1t ),

where ξ∗ = 1∏n−1
j=1 (1−rj)

η∗ and r1, . . . , rn−1 are defined as
Assumption 4.

Proof: See Appendix II-B.
Lemmas 4-5 demonstrate that the consensus of original

states is equivalent to that of the compressed states. Specif-
ically, Lemma 4 shows that xin(t) and K2xi(t) satisfy the
difference equation in Lemma 5 for each agent i. Since
xi(t) − x̄(t) is a linear combination of x1(t), . . . , xN (t), it
can be seen that xin(t) − x̄n(t) and K2(xi(t) − x̄(t)) still
satisfy the difference equation in Lemma 5, where x̄(t) =
[x̄1(t), . . . , x̄n(t)]

T ∈ Rn. Then, the equivalence between the
consensus of the original states xin(t)−x̄n(t) and compressed
states K2(xi(t)− x̄(t)) is given in Lemma 5.

Using the consensus equivalence between the original states
xj(t) and the compressed states K2xj(t), the consensus of
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MAS can be established based on the results of the compressed
states in Theorem 1 as follows.

Theorem 2: Under Assumptions 1-4, the following results
are obtained:

i) The MAS (1)-(3) reaches consensus, i.e.,

lim
t→∞

E[∥xi(t)− x̄(t)∥2] = 0,

providing with β > 1
2fM

(
γλ2

G

λ3
2

+ γα);

ii) The MAS (1)-(3) reaches consensus at the rate of O( 1t ),
i.e.,

E[∥xi(t)− x̄(t)∥2] = O

(
1

t

)
,

if β > 1
2fM

(
γ2λ2

G

λ2
2(γλ2−1)

+ γα+ 1) and γ > 1
λ2

.
Proof: i) By Lemmas 4-5, we have

Dn−1
(
xin(t)− x̄n(t)

)
+ bn−1D

n−2
(
xin(t)− x̄n(t)

)
+ · · ·+ b1

(
xin(t)− x̄n(t)

)
=Dn−1K2

(
xi(t)− x̄(t)

)
. (8)

By Theorem 1, when β > 1
2fM

(
γλ2

G

λ3
2

+ γα), there is
limt→∞ E[∥K2xi(t)−K2x̄(t)∥2] = 0 for i ∈ N0.

Then, using Lemma 5 and (8), we have

lim
t→∞

E[
(
xin(t)− x̄n(t)

)2
] = 0.

The proof of Lemma 4 shows that Dxil(t) = xil(t+ 1) =
xi(l+1)(t) for i ∈ N0 and l = 1, . . . , n− 1. Then, we have

lim
t→∞

E[
(
xil(t)− x̄l(t)

)2
]

= lim
t→∞

E[
(
xin(t− n+ l)− x̄n(t− n+ l)

)2
]

=0,

where x̄l(t) is the l-th element of x̄(t). Thus,

lim
t→∞

E[∥xi(t)− x̄(t)∥2] = 0.

ii) Similarly, when β > 1
2fM

(
γ2λ2

G

λ2
2(γλ2−1)

+ γα+1) and γ >
1
λ2

, by Theorem 1, we have

E[∥K2xi(t)−K2x̄(t)∥2] = O(
1

t
).

Same as the proof of Part i), by Lemmas 4-5, there is
E[

(
xil(t) − x̄l(t)

)2
] = O( 1t ), i ∈ N0, l = 1, . . . , n. As a

result, we know that

E[∥xi(t)− x̄(t)∥2] = O

(
1

t

)
.

This completes the proof.

V. CONSENSUS OF MASS UNDER MARKOVIAN
SWITCHING COMMUNICATION NETWORKS

In practical networks, communication topologies often
evolve with temporal correlations. Markovian switching natu-
rally models such dynamics, capturing statistical dependencies
and encompassing a diverse range of stochastic evolutions.
This section extends the proposed one-bit consensus algorithm
to the Markovian switching case and evaluates its performance.

Model the communication links between agents as undi-
rected time-varying topology Gm(t) = (N0, Em(t)), whose
dynamic is described by a homogeneous Markovian chain
{m(t) : t ∈ N} with a state space {1, 2, . . . , h}, transition
probability puv = P{m(t) = v|m(t− 1) = u}, and stationary
distribution πu = limt→∞ P{m(t) = u}, for all u, v ∈
{1, 2, . . . , h}. N0 = {1, . . . , N} is the set of agents, and
Em(t) ⊆ N0 × N0 is the ordered edges set of the topology
Gm(t). Moreover, assume Gm(t) ∈ {G1, G2, . . . , Gh}. Denote
N

m(t)
i as the neighbor set of the agent i in the topology Gm(t).

Denote the adjacency matrix and the degree matrix at time t
as Am(t) and Dm(t), respectively. Then, the Laplace matrix of
Gm(t) is defined as Lm(t) = Dm(t) −Am(t).

To ensure the effectiveness of the algorithm, we give the
following joint connectivity assumption.

Assumption 5: {G1, G2, . . . , Gh} are jointly connected.
Based on Assumption 5, denote the jointly connected topol-

ogy formed by G1,G2,. . .,Gh as G′ = (N0, E
′), where E′ =

E1∪· · ·∪Eh is the set of all the edges. Next, same as the fixed
topology G in Section IV, we define new notations for the new
topology G′, which is considered in the following. Without
loss of generality, we continue to use the same notations di,
Ni, d, ẑ(t), s(t), and C for G′ to simplify this paper.

Similarly, three matrices are constructed for the switching
topology case.

Pm(t) is designed to select each neighbor of each agent
at time t. Define Pm(t) = diag{. . . , pijm(t), . . .} ∈ Rd×d in
lexicographic order of (i, j) ∈ E′, where pijm(t) = 1 when
(i, j) ∈ Em(t), else pijm(t) = 0.

Wm(t) is designed to select the neighbor set of each agent
at time t. Define Wm(t) = [. . . ,W ij

m(t), . . .] ∈ RN×d in
lexicographic order of (i, j) ∈ E′, where W ij

m(t) = e⃗i ∈ RN

when (i, j) ∈ Em(t), else is 0⃗N .
Q is defined as Section IV and is based on the topology G′.
Based on the above matrices, the vector forms of estimation

and update are given as follows:
1.Estimation:

ẑ(t) =ΠM

{
ẑ(t− 1) +

β

t
Pm(t)

(
F(C − ẑ(t− 1))− s(t)

)}
,

where ΠM (z) = [ΠM (z1), . . . ,ΠM (zd)]
T , F(z) = [F (z1),

. . . , F (zd)]
T , for any z = [z1, z2, . . . , zd]

T ∈ Rd.
2.Update:

x(t) =
(
IN ⊗ (A+BK1)−

γ

t
Lm(t−1) ⊗BK2

)
x(t− 1)

+
γ

t
(Wm(t−1) ⊗B)ε̂(t),

where ε̂(t) = ẑ(t) − (Q ⊗K2)x(t) is the estimation error of
the compressed state (IN ⊗K2)x(t).
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The main difficulty in the analysis of the switching topology
case is that the fixed matrices Id, L, and W used to describe
the relationship between agents are respectively changed into
switching matrices Pm(t), Lm(t) and Wm(t), in contrast to
the fixed topology case. To overcome this challenge, the
following lemmas are given to establish a certain equivalence
relationship between the Markovian switching topologies and
a fixed topology.

Lemma 6: For the switching matrices Lm(t) and Pm(t), we
have the following conclusions,

E[Lm(t)] =

h∑
i=1

πiLi +O(λt
L),

E[Pm(t)] =

h∑
i=1

πiPi +O(λt
P ),

where 0 < λL, λP < 1.
Proof: Denote pu,t = P{Gm(t) = Gu}, the transition

probability matrix as P = {puv}u,v and stationary distribution
vector as π = [π1, . . . , πh]. By the property of transition
probability puv and stationary distribution πu, we have πP =
π, which implies that π is a positive left eigenvector corre-
sponding to the eigenvalue 1.

It can be seen that P 1⃗h = 1⃗h, thus 1⃗h is a positive right
eigenvector corresponding to the eigenvalue 1. Besides, we
can know that π1⃗h =

∑h
i=1 πi = 1.

Since P is symmetrical, by [39, Corollary 1], we know
that eigenvalue 1 satisfies [39, Theorem 1.1]. Then, by [39,
Theorem 1.2], there exists a λp that satisfies 0 < λp < 1 such
that

P t = 1⃗hπ +O(λt
p).

Moreover, by the definition of pu,t, it can be seen that
[p1,t+1, . . . , ph,t+1] = [p1,t, . . . , ph,t]P . Then, we have

[p1,t, . . . , ph,t] =[p1,1, . . . , ph,1]P
t−1

=[p1,1, . . . , ph,1 ]⃗1hπ +O(λt
p),

which implies that pu,t =
∑h

i=1 πupi,1+O(λt
p) = πu+O(λt

p),
where 0 < λp < 1.

Therefore, by the definition of expectation, we have
E[Lm(t)] =

∑h
i=1 pi,tLi =

∑h
i=1 πiLi + O(λt

L) and
E[Pm(t)] =

∑h
i=1 πiPi + O(λt

P ), where 0 < λL, λP < 1.
This completes the proof.

Define Ľ =
∑h

i=1 πiLi. The following lemma describes its
properties, which are similar to those in the fixed topology
case in Section II-B. To simplify the notation, we denote the
eigenvalues of Ľ as λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λN , consistent
with the notation used in Section II-B.

Lemma 7: ([33, Lemma 2]). If Assumption 5 holds, then
matrix Ľ has these properties:

i) Ľ is a nonnegative definite matrix with rank n − 1 and
eigenvalues 0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λN ;

ii) There exists an orthogonal matrix TG such that
T−1
G ĽTG = diag{λ1, . . . , λN}.

Remark 9: The switching topology case can be converted
into a fixed one by taking the expectation, requiring only minor
adjustments in the analysis process to achieve convergence

properties consistent with the fixed topology case. From Lem-
mas 6 and 7, we can see that the switching matrix Lm(t) can be
treated as the sum of the fixed matrix Ľ and the exponential
term O(λt

L) when taking a mathematical expectation. Since
O(λt

L) converges exponentially to zero, it is smaller than
O( 1

t2 ), which does not affect the analysis of convergence.
Based on these lemmas, the coupling relationship between

the two Lyapunov functions V (t) and R(t) is obtained, which
is in the same form as in the fixed graph case, and only with
a slight change in the definitions of the constant coefficients.

Lemma 8: Under Assumptions 1-2 and 5, V (t) satisfies

V (t) ≤
(
1− γλ2

t

)
V (t− 1) +

γλG

tλ2
R(t− 1) +O

( 1

t2

)
,

where λG = max
1≤i≤h

{∥T−1
G JNWi∥2}.

Proof: See Appendix III-A.
Lemma 9: Under Assumptions 1-2 and 5, R(t) satisfies

R(t) ≤
(
1− 2βfMπmin − γα

t

)
R(t− 1) +

γλG

tλ2
V (t− 1)

+O
( 1

t2

)
,

where fM = mini,j∈N0
{f(|cij | + M)}, πmin = min

1≤i≤h
{πi},

α = 2
√
λQW + λQLλ2/λG, λQW = max

1≤i≤h
{∥QWi∥2}, and

λQL = max
1≤i≤h

{∥QLiTG∥2}.

Proof: See Appendix III-B.
Since Lemmas 8-9 have the same form as Lemmas 2-3,

we can just repeat the analysis process of the fixed topology
case to get the results of the switching topology case, as the
following theorems.

Theorem 3: Under Assumptions 1-2 and 5, the compressed
states K2xj(t) and their estimates ẑij(t) satisfy:

i) When β > 1
2fMπmin

(
γλ2

G

λ3
2

+ γα), the compressed states
reach consensus and their estimates converge to the real
compressed states, i.e., for i ∈ N0, j ∈ Ni,

lim
t→∞

E[∥K2xi(t)−K2x̄(t)∥2] = 0,

lim
t→∞

E[∥ẑij(t)−K2xj(t)∥2] = 0;

ii) When β > 1
2fMπmin

(
γ2λ2

G

λ2
2(γλ2−1)

+ γα + 1) and γ > 1
λ2

,
the compressed states reach consensus at the rate of O( 1t ),
and their estimates converge to the real compressed states
at the rate of O( 1t ), i.e., for i ∈ N0, j ∈ Ni,

E[∥K2xi(t)−K2x̄(t)∥2] = O
(1
t

)
,

E[∥ẑij(t)−K2xj(t)∥2] = O
(1
t

)
,

where x̄(t) = 1
N

∑N
i=1 xi(t).

Theorem 4: Under Assumptions 1-2 and 4-5, the following
results are obtained:

i) The MAS (1)-(3) reaches consensus, i.e.,

lim
t→∞

E[∥xi(t)− x̄(t)∥2] = 0,

providing with β > 1
2fMπmin

(
γλ2

G

λ3
2

+ γα);
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ii) The MAS (1)-(3) reaches consensus at the rate of O( 1t ),
i.e.,

E[∥xi(t)− x̄(t)∥2] = O

(
1

t

)
,

if β > 1
2fMπmin

(
γ2λ2

G

λ2
2(γλ2−1)

+ γα+ 1) and γ > 1
λ2

.
The difference between the results of the Markovian switch-

ing topologies and the fixed topology is that the step coeffi-
cient β depends on the switching probability of Markovian
switching topologies, i.e., the minimal stationary distribution
πmin of the Markovian chain {m(t) : t ∈ N}. In the case of a
single topology, it is straightforward to observe that πmin = 1.
Consequently, Theorems 3-4 reduce to the results for the fixed
topology case, as stated in Theorems 1-2.

VI. NUMERICAL SIMULATION

In this section, we provide two simulation examples to
illustrate the theoretical results.

Example 1: Consider the altitude consensus control of a
multi-aircraft system composed of seven aircraft ([20] and
[40]), whose communication network is shown as Figure 1.

1 2 3

4 5 6

7

Fig. 1. The fixed communication topology of the multi-agent system

The schematic diagram of the aircraft is shown in Figure 2,
where LW denotes the lift force applied at the center of lift
CL; CG is the center of mass; d is the distance between CL

and CG. The mass of aircraft is denoted by m and its moment
of inertia about CG is denoted by J . The altitude of the ith
aircraft is denoted by hi, which is controlled by the elevator’s
rotation Ei.

𝐸

𝐿!

elevator wing

𝐿"

𝐶#

𝐶$ 𝛼

horizontal

𝑑

𝑙

Fig. 2. A schematic diagram of an aircraft

By [40], the dynamics of the ith aircraft can be modelled
as follows:{

Jα̈i + bα̇i + (CZEl + CZW d)α̇i = CZElEi,

mḧi = (CZE + CZW )αi − CZEEi,
(9)

where αi is the rotation angle of the ith aircraft about CG;
b is the friction coefficient; LE = CZE(Ei − αi) is the
aerodynamic force on the elevator.

In this numerical simulation, similar to [20], we set J =
1,m = 1, b = 4, CZE = 1, CZW = 5, l = 3 and d = 0.2. Let
xi = (αi, α̇i, hi, ḣi)

T . Then, the dynamics of the ith aircraft
can be rewritten as

ẋi = Acxi +BcEi,

where

Ac =


0 1 0 0
−4 −4 0 0
0 0 0 1
6 0 0 0

 , Bc =


0
3
0
1

 .

Due to the wide application of digital networks, the data is
sampled in practice. In the simulation, the sampling period is
set to be T = 0.5. Then, by adopting the zero-order holder
strategy, the discretization of (9) is obtained as follows:

xi(t+ 1) = Adxi(t) +BdEi(t),

where

Ad = eAcT =


0.7358 0.1839 0 0
−0.7358 0 0 0
0.7073 0.0777 1 0.5
2.6891 0.3964 0 1

 ,

Bd =

∫ T

0

eActdtBc =


0.1982
0.5518
−0.093
−0.2668

 . (10)

It is easily verified that the linear system described by (10)
is controllable. Therefore, it can be transformed into the
Brunovsky canonical form defined by (3).

In this simulation example, we set the communication noises
dij ∼ N(0, 16) for i ∈ N0, j ∈ Ni. Then, assume that the
initial altitudes hi of these seven aircraft are h1 = 5, h2 =
2, h3 = 4, h4 = 3, h5 = 1.5, h6 = 2.5, h7 = 1 and the
initial values of αi, α̇i, ḣi are 0. The unit of hi can be selected
as kilometers, meters, etc., according to the actual situation.
Denote the initial estimates as 0⃗20. Moreover, select β = 1500
and γ = 1. Then, we apply the consensus algorithm in
Algorithm 1, with the thresholds cij = −2, the controller gain
K1 = [−0.9224,−0.1825,−0.0000,−0.1788] and the com-
pression coefficient K2 = [3.8734, 0.9054, 0.3575, 0.8772].
Given the initial states x0

i and compression coefficient K2,
choose M = 2 as appropriate.

As shown in Figure 3, the altitudes of all agents reach
consensus. Besides, Figure 4 shows a linear relationship be-
tween the logarithm of the mean square errors (MSEs) and
the logarithm of the index t, which illustrates each agent can
reach consensus at the rate of O( 1t ).

We next construct another simulation example to demon-
strate the consensus of the MAS under Markovian switching
communication networks.

Example 2: Take the same system settings, including the
system model, noise distribution, and initial states, as those
in Example 1. The Markovian switching topologies Gm(t)
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Fig. 3. The altitude trajectory of each aircraft under fixed topology

Fig. 4. The trajectory of the log(MSEs) under fixed topology

with m(t) ∈ {1, 2, 3} are depicted in Figure 5. The transition
probability matrix of the Markov chain m(t) is chosen to

be P =

0.5 0.3 0.2
0.2 0.5 0.3
0.3 0.2 0.5

 with its stationary distribution is

π = [1/3, 1/3, 1/3]. It is clear that Assumption 5 is satisfied.
By Theorem 4, we select β = 10000, and γ = 2.4. Then,

apply the consensus algorithm with the same thresholds cij ,
the controller gain K1, and the compression coefficient K2 as
Example 1. Figure 6 shows the consensus of the MAS under
Markovian switching topologies. Moreover, Figure 7 illustrates
the consensus rate O( 1t ) of the MAS, which is the same as
Example 1.

Remark 10: The connectivity and switching probability of
communication topologies affect the selection of the step
coefficients β and γ. Specifically, the values of β and γ are
affected by the algebraic connectivity λ2 of the topology graph
and minimum stationary distribution probability πmin related
to the switching probability. To achieve consensus, smaller
values of λ2 and πmin require larger step coefficients, as
illustrated in Examples 1-2. To be specific, in the Markovian
switching topology case, both the decrease of λ2 and πmin

1 2 3

4 5 6

7

1 2 3

4 5 6

7

1 2 3

4 5 6

7

a) 𝐺! b) 𝐺"

c) 𝐺#

Fig. 5. The Markovian switching communication topologies

Fig. 6. The altitude trajectory of each aircraft under Markovian switching
topologies

increase the lower bound on the required estimation step
coefficient β and control step coefficient γ, necessitating a
larger estimation step coefficient β. This explains why the
estimation step coefficient β is selected as β = 1500 in
Example 1 and β = 10000 in Example 2.

VII. CONCLUSION

This paper investigates the one-bit consensus of controllable
linear MASs with communication noises. A consensus algo-
rithm consists of a communication protocol and a consensus
controller is designed. The communication protocol intro-
duces a linear compression encoding function to achieve one-
bit communication, which significantly saves communication
costs. A consensus controller with both a stabilization term
and a consensus term is proposed to ensure consensus of
an unstable MAS. Two Lyapunov functions for the consen-
sus error and estimation error of the compressed states are
constructed. By jointly analyzing the convergence property
of them, it is shown that the compressed states can achieve
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Fig. 7. The trajectory of the log(MSEs) under Markovian switching
topologies

consensus, and the estimates can converge to the real values.
Moreover, by establishing the consensus equivalence between
the compressed and original states, it is proven that all agents
can achieve consensus at the rate of the reciprocal of the
iteration times, both in the case with fixed and switching
communication networks.

In the future, there will be many interesting problems in
one-bit consensus control. For example, the one-bit consensus
with event-triggered communication mechanisms has garnered
considerable attention, yet numerous open questions and chal-
lenges remain in this area that warrant further investigation.

APPENDIX I
THE PROOF ABOUT COMPRESSED STATES AND

ESTIMATES

A. The proof of Lemma 2

Step 1: Calculate the recursive expression of δ(t).
From δ(t) = (JN ⊗ In)x(t), L1⃗N = 1⃗TNL = 0, and JNL =

LJN , we have

δ(t) =(JN ⊗ In)x(t)

=(JN ⊗ In)(In ⊗ Ã− γ

t
L⊗BK2)x(t− 1)

+
γ

t
(JNW ⊗B)ε̂(t− 1)

=(IN ⊗ Ã− γ

t
L⊗BK2)δ(t− 1)

+
γ

t
(JNW ⊗B)ε̂(t− 1), (A1)

where Ã = A + BK1, δ(t) = [δT1 (t), . . . , δ
T
N (t)]T ∈ RnN ,

and δi(t) = xi(t)− x̄(t) for i ∈ N0.
Step 2: Transform δ(t) to δ̂(t) and show that its first element

is zero.
Denote δ̃(t) = (T−1

G ⊗ In)δ(t). Denote the first n elements
of δ̃(t) by δ̃(1)(t), and the others by δ̃(2)(t). Since the first row
of T−1

G is 1√
N
1⃗TN , we know δ̃(1)(t) = 1√

N

∑N
i=1 δi(t) = 0⃗n.

Denote δ̂(t) = (IN ⊗K2)δ̃(t). Denote the first element of
δ̂(t) by δ̂(1)(t), and the others by δ̂(2)(t). Since δ̂(1)(t) =

K2δ̃
(1)(t) and δ̃(1)(t) = 0⃗n, we know δ̂(1)(t) = 0. Besides,

it can be seen that V (t) = E[∥δ̂(t)∥2] = E[δ̂T (t)δ̂(t)] =
E[δ̂(2)T (t)δ̂(2)(t)].

Step 3: Expand the Lyapunov function V (t) in terms of
δ̂(t) and ε̂(t).

Then, by Remark 5 and (A1), we have

V (t) =E[∥(T−1
G ⊗K2)δ(t)∥2]

=E
[∥∥(IN − γ

t
T−1
G LTG)δ̂(t− 1)

+
γ

t
(T−1

G JNW )ε̂(t− 1)
∥∥2]

=E[δ̂T (t− 1)(IN − γ

t
T−1
G LTG)

2δ̂(t− 1)]

+
2γ

t
E[δ̂T (t− 1)(IN − γ

t
T−1
G LTG)

· (T−1
G JNW )ε̂(t− 1)] +O

( 1

t2

)
. (A2)

Denote the first and second items of formula (A2) as V1(t)
and V2(t), respectively, i.e., V (t) ≜ V1(t) + V2(t) +O

(
1
t2

)
.

Step 4: Estimate V1(t) and express it in terms of V (t− 1)
to derive a recursive inequality of V (t).

By δ̂(1)(t) = 0, we have δ̂T (t)(IN − γ
t diag(0, λ2, . . . , λN ))

·δ̂(t) = δ̂(2)T (t)(IN−1 − γ
t diag(λ2, . . . , λN ))δ̂(2)(t). There-

fore, one can get

V1(t) =E[δ̂T (t− 1)(IN − γ

t
T−1
G LTG)

2δ̂(t− 1)]

=E
[
δ̂T (t− 1)diag2(1, 1− γ

t
λ2 . . . , 1−

γ

t
λN )δ̂(t− 1)

]
=E

[
δ̂(2)T (t− 1)diag2(1− γ

t
λ2 . . . , 1−

γ

t
λN )δ̂(2)(t− 1)

]
≤
(
1− γλ2

t

)2
V (t− 1). (A3)

Step 5: Estimate V2(t) and express it in terms of V (t− 1)
and R(t− 1).

From the property of T−1
G LTG and Cauchy Schwarz in-

equality, we have

V2(t) =
2γ

t
E[δ̂T (t− 1)(IN − γ

t
T−1
G LTG)

· (T−1
G JNW )ε̂(t− 1)]

=
2γ

t
E[δ̂T (t− 1)diag(1, 1− γ

t
λ2 . . . , 1−

γ

t
λN )

· (T−1
G JNW )ε̂(t− 1)]

≤2γ

t

(
E
[
δ̂T (t− 1)diag2(1, 1− γ

t
λ2, . . . , 1−

γ

t
λN )

· δ̂(t− 1)
]
E
[
ε̂T (t− 1)WTJT

NJNWε̂(t− 1)
]) 1

2

=
2γ

t

(
E
[
δ̂(2)T (t− 1)diag2(1− γ

t
λ2, . . . , 1−

γ

t
λN )

· δ̂(2)(t− 1)
]
E
[
ε̂T (t− 1)WTJT

NJNWε̂(t− 1)
]) 1

2

≤2γ

t

((
1− γλ2

t

)2
V (t− 1)

) 1
2
(
λGR(t− 1)

) 1
2

≤γ

t

(
λ2

(
1− γλ2

t

)2
V (t− 1) +

λG

λ2
R(t− 1)

)
. (A4)

Step 6: Combine the inequalities of V1(t) and V2(t) to
obtain the recursive inequality of V (t).
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Combining (A2)-(A4), we have

V (t) ≤
(
1− γλ2

t
− γ2λ2

2

t2
+

γ3λ3
2

t3
)
V (t− 1) +

γλG

λ2t
R(t− 1)

+O
( 1

t2

)
≤
(
1− γλ2

t

)
V (t− 1) +

γλG/λ2

t
R(t− 1) +O

( 1

t2

)
.

B. The proof of Lemma 3

Step 1: Express the Lyapunov function R(t) in terms of
ε̂(t) and δ̂(t).

By the definition of ε̂(t), Lemma 1 and the nonexpansive-
ness of the projection mapping, we have

R(t) =E[∥ε̂(t)∥2]
=E[∥ẑ(t)− (Q⊗K2)x(t)∥2]

=E
[∥∥∥ΠM

{
ẑ(t− 1) +

β

t

(
F(C − ẑ(t− 1))− s(t)

)}
− (Q⊗K2)x(t)

∥∥∥2]
≤E

[∥∥∥ẑ(t− 1) +
β

t

(
F(C − ẑ(t− 1))− s(t)

)
− (Q⊗K2)x(t)

∥∥∥2]
=E

[∥∥∥(Id − γ

t
QW

)
ε̂(t− 1) +

γ

t
(QL⊗K2)δ(t− 1)

+
β

t

(
F(C − ẑ(t− 1))− s(t)

)∥∥∥2]
=E

[∥∥∥(Id − γ

t
QW

)
ε̂(t− 1) +

γ

t
QLTGδ̂(t− 1)

+
β

t

(
F(C − ẑ(t− 1))− s(t)

)∥∥∥2]
=E

[
ε̂T (t− 1)

(
Id −

γ

t
QW

)T (
Id −

γ

t
QW

)
ε̂(t− 1)

]
+

2γ

t
E
[
ε̂T (t− 1)

(
Id −

γ

t
QW

)T
QLTGδ̂(t− 1)

]
+

2β

t
E
[
ε̂T (t− 1)

(
Id −

γ

t
QW

)T(F(
C − ẑ(t− 1)

)
− s(t)

))]
+O

( 1

t2

)
. (A5)

Denote the first, second, and third items of (A5) as R1(t),
R2(t), and R3(t), respectively, i.e., R(t) ≤ R1(t) + R2(t) +
R3(t) +O

(
1
t2

)
.

Step 2: Estimate R1(t) and express it in terms of R(t−1).

R1(t) =E
[
ε̂T (t− 1)

(
Id −

γ

t
QW

)T (
Id −

γ

t
QW

)
ε̂(t− 1)

]
≤

(
1 +

γ
√
λQW

t

)2
R(t− 1). (A6)

Step 3: Estimate R2(t) and also express it in terms of V (t−
1) and R(t− 1).

Based on the Cauchy-Schwarz inequality, we have

R2(t) =
2γ

t
E
[
ε̂T (t− 1)

(
Id −

γ

t
QW

)T
QLTGδ̂(t− 1)

]
≤2γ

t

(
E
[
ε̂T (t− 1)

(
Id −

γ

t
QW

)T (
Id −

γ

t
QW

)
· ε̂(t− 1)

]
E[δ̂T (t− 1)TT

GLTQTQLTGδ̂(t− 1)]
) 1

2

≤2γ

t

((
1 +

γ
√
λQW

t

)2
R(t− 1) · λQLV (t− 1)

) 1
2

≤γ

t

(λQLλ2

λG

(
1 +

γ
√

λQW

t

)2
R(t− 1) +

λG

λ2
V (t− 1)

)
.

(A7)

Step 4: Express R3(t) in terms of V (t− 1) and R(t− 1).
By the communication protocol designed in Algorithm 1,

it can be seen that E[s(t)] = F
(
C − (Q ⊗ K2)x(t)

)
under

Assumption 2. Then, we get

R3(t) =
2β

t
E
[
ε̂T (t− 1)

(
Id −

γ

t
QW

)T(F(
C − ẑ(t− 1)

)
− s(t)

)]
=
2β

t
E
[
ε̂T (t− 1)

(
Id −

γ

t
QW

)T(F(
C − ẑ(t− 1)

)
−F

(
C − (Q⊗K2)x(t)

))]
And, by Lagrange’s Mean Value Theorem, we have

F
(
cij − ẑij(t− 1)

)
− F

(
cij −K2xj(t)

)
=− f(ζij(t))

(
ẑij(t− 1)−K2xj(t)

)
,

where ζij(t) is between cij − ẑij(t− 1) and cij −K2xj(t).
Let ζ(t) = [. . . , ζij(t), . . .]

T , arranged in lexico-
graphic order of (i, j) ∈ E. Denote diag(f⃗(ζ(t))) =
diag{. . . , f(ζij(t)), . . .} ∈ Rd×d as a diagonal matrix
generated by each element of the vector f⃗(ζ(t)) =
[. . . , f(ζij(t)), . . .]

T ∈ Rd. By Lemma 1, ζij(t) is
bounded. Since the function f(·) is continuous, we have
diag

(
f⃗(ζ(t))

)
≥ fM · Id and

R3(t) =− 2β

t
E
[
ε̂T (t− 1)

(
Id −

γ

t
QW

)T
diag

(
f⃗(ζ(t))

)
·
(
ẑ(t− 1)− (Q⊗K2)x(t)

)
=− 2β

t
E
[
ε̂T (t− 1)

(
Id −

γ

t
QW

)T
diag

(
f⃗(ζ(t))

)
·
(
ε̂(t− 1)− γ

t

(
QWε̂(t− 1)−QLTGδ̂(t− 1)

))]
=− 2β

t
E
[
ε̂T (t− 1)diag

(
f⃗(ζ(t))

)
ε̂(t− 1)

]
+O

( 1

t2

)
≤− 2βfM

t
R(t− 1) +O

( 1

t2

)
. (A8)

Step 5: Combine the inequalities of R1(t), R2(t), and R3(t)
to obtain the recursive inequality of R(t).

Considering (A5) with (A6)-(A8), we can obtain that

R(t) ≤
(
1− 2βfM − γα

t

)
R(t− 1) +

γλG/λ2

t
V (t− 1)

+O
( 1

t2

)
.

APPENDIX II
THE PROOF ABOUT ORIGINAL STATES

A. The proof of Lemma 4

By the Brunovsky canonical form (3) and (6), we have

xi(t+ 1) =(A+BK1)xi(t) +
γ

t+ 1
B

∑
j∈Ni

(ẑij(t)−K2xj(t))
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=


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
b1 b2 − b1 · · · 1− bn−1

xi(t)

+
γ

t+ 1


0
...
0
1

 ∑
j∈Ni

(ẑij(t)−K2xj(t)).

Then, there is xi1(t + 1) = xi2(t), . . . , xi(n−1)(t + 1) =
xin(t). From Dxij(t) = xij(t+ 1), we have

Dxij(t) = xi(j+1)(t), j = 1, . . . , n− 1.

Since K2xi(t) = b1xi1(t)+ . . . ,+bn−1xi(n−1)(t)+xin(t),
we can obatin that

Dn−1K2xi(t) = b1xin(t)+. . .+bn−1D
n−2xin(t)+D

n−1xin(t).

B. The proof of Lemma 5
i) Step 1: Prove the convergence of

∏n−1
i=2 (D− ri)ξ(t).

Let ξ1(t) ≜
∏n−1

i=2 (D − ri)ξ(t). Then, Dξ1(t) = r1ξ(t) +
η(t), i.e., ξ1(t+ 1) = r1ξ1(t) + η(t), and thus,

ξ1(t) = rt1ξ1(0) +

t−1∑
i=0

ri1η(t− 1− i)

=rt1ξ1(0) +

t−1∑
i=0

ri1
(
η(t− 1− i)− η∗

)
+

t−1∑
i=0

ri1η
∗, (B1)

where

E
[( t−1∑

i=0

ri1
(
η(t− 1− i)− η∗

))2]
=E

[ t−1∑
i=0

r2i1
(
η(t− 1− i)− η∗

)2
+

t−1∑
i=0

∑
j ̸=i

ri+j
1

(
η(t− 1− i)

− η∗
)(
η(t− 1− j)− η∗

)]
=

t−1∑
i=0

r2i1 E
[(
η(t− 1− i)− η∗

)2]
+

t−1∑
i=0

∑
j ̸=i

ri+j
1 E

[(
η(t− 1

− i)− η∗
)(
η(t− 1− j)− η∗

)]
≤

t−1∑
i=0

r2i1 E
[(
η(t− 1− i)− η∗

)2]
+

t−1∑
i=0

∑
j ̸=i

ri+j
1

(
E
[(
η(t− 1

− i)− η∗
)2]

E
[(
η(t− 1− j)− η∗

)2]) 1
2

=
( t−1∑

i=0

ri1

(
E
[(
η(t− 1− i)− η∗

)2]) 1
2
)2

. (B2)

To calculate the above formula (B2), without loss of gener-
ality, assume that r1 ≥ 0. Then,

lim
t→∞

∣∣∣ t−1∑
i=0

ri1

(
E
[(
η(t− 1− i)− η∗

)2]) 1
2
∣∣∣

= lim
t→∞

∑t−1
i=0 r

−i
1

(
E
[(
η(i)− η∗

)2]) 1
2

r1−t
1

. (B3)

Since 0 ≤ r1 < 1, we know that r1−t
1 is a strictly monotone

and divergent sequence. Then, by Stolz-Cesàro theorem,

lim
t→∞

∑t−1
i=0 r

−i
1

(
E
[(
η(i)− η∗

)2]) 1
2

r1−t
1

= lim
t→∞

r−t
1

(
E
[(
η(t)− η∗

)2]) 1
2

r−t
1 − r1−t

1

= lim
t→∞

(
E
[(
η(t)− η∗

)2]) 1
2

1− r1
=0.

Therefore, by (B2) we have

lim
t→∞

E
[( t−1∑

i=0

ri1
(
η(t− 1− i)− η∗

))2]
= 0.

Since |r1| < 1 and (B1), we have

lim
t→∞

E
[(
ξ1(t)−

1

1− r1
η∗
)2]

= lim
t→∞

E
[(

rt1ξ1(0) +

t−1∑
i=0

ri1
(
η(t− 1− i)− η∗

)
+

t−1∑
i=0

ri1η
∗ − 1

1− r1
η∗
)2]

= lim
t→∞

E
[(

rt1ξ1(0) +

t−1∑
i=0

ri1
(
η(t− 1− i)− η∗

)
− rt1η

∗

1− r1

)2]
= lim

t→∞
r2t1 ξ21(0) + 2 lim

t→∞
rt1ξ1(0)E

[ t−1∑
i=0

ri1
(
η(t− 1− i)− η∗

)]
+ lim

t→∞
E
[( t−1∑

i=0

ri1
(
η(t− 1− i)− η∗

))2]
− 2 lim

t→∞

rt1η
∗

1− r1
E
[ t−1∑
i=0

ri1
(
η(t− 1− i)− η∗

)]
− 2 lim

t→∞

r2t1 η∗ξ1(0)

1− r1
+ lim

t→∞
(
rt1η

∗

1− r1
)2

=0.

Step 2: Obtain the convergence of ξ(t).
Thus, limt→∞ E

[(
ξ1(t) − 1

1−r1
η∗
)2]

= 0. Similarly, de-
noting ξi(t) ≜

∏n−1
j=i+1(D− rj)ξ(t), repeating the procedure,

we have limt→∞ E
[(
ξi(t) − 1∏i

j=1 1−rj
η∗
)2]

= 0, for i =

1, . . . , n− 1. By the definition of ξi(t), we know that ξ(t) =
ξn−1(t). Thus,

lim
t→∞

E
[(
ξ(t)− ξ∗

)2]
= 0,

where ξ∗ = 1∏n−1
j=1 1−rj

η∗.

ii) Step 1: Calculate the convergence rate of
∏n−1

i=2 (D −
ri)ξ(t).

By Part i), we know that ξi(t) converges to 1∏i
j=1 1−rj

η∗

in the mean square when η(t) converges to η∗ in the mean
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square. Now we calculate the convergence rate of ξi(t) under
the condition that η(t) converges to η∗ at the rate of O( 1t ).

Firstly, we calculate
∣∣∑t−1

i=0 r
i
1

(
E
[(
η(t−1− i)−η∗

)2]) 1
2
∣∣.

Without loss of generality, assume that r1 ≥ 0. Then, (B3) is
obtained.

Since E[(η(t) − η∗)2] = O( 1t ), there exists Mη > 0 such
that E[(η(t)− η∗)2] ≤ Mη

t . Then,

∑t−1
i=0 r

−i
1

(
E
[(
η(i)− η∗

)2]) 1
2

r1−t
1

≤
∑t−1

i=0 r
−i
1 Mη

√
i

r1−t
1

. (B4)

For sequence r1−t
1 /

√
t, it can be seen that r1−t

1 /
√
t is

strictly monotone and divergent when t ≥ −1/ ln r1. Then,
by Stolz-Cesàro theorem,

lim
t→∞

∑t−1
i=0 r

−i
1 Mη

√
i

r1−t
1 /

√
t

= lim
t→∞

r−t
1 Mη/

√
t

r−t
1 /

√
t+ 1− r1−t

1 /
√
t

=

√
Mη

1− r1
,

which implies
∑t−1

i=0 r−i
1 Mη

√
i

r1−t
1 /

√
t

= O(1), or equivalently,∑t−1
i=0 r−i

1 Mη

√
i

r1−t
1

= O( 1√
t
). This together with (B2)-(B4) gives

E
[( t−1∑

i=0

ri1
(
η(t− 1− i)− η∗

))2]
= O

(1
t

)
.

Thus, E
[∣∣∑t−1

i=0 r
i
1

(
η(t − 1 − i) − η∗

)∣∣] = O(1/
√
t) can

also be obtained. By (B1), we can get that

E
[(
ξ1(t)−

1

1− r1
η∗
)2]

=r2t1 ξ21(0) + 2rt1ξ1(0)E
[ t−1∑
i=0

ri1
(
η(t− 1− i)− η∗

)]
+ E

[( t−1∑
i=0

ri1
(
η(t− 1− i)− η∗

))2]
− 2

r2t1 η∗ξ1(0)

1− r1

− 2
rt1η

∗

1− r1
E
[ t−1∑
i=0

ri1
(
η(t− 1− i)− η∗

)]
+ (

rt1η
∗

1− r1
)2

=O(r2t1 ) +O
( rt1√

t

)
+O

(1
t

)
=O

(1
t

)
.

Step 2: Obtain the convergence rate of ξ(t).
Similarly to the proof of Part i), repeating the procedure,

we have

E
[(
ξ(t)− ξ∗

)2]
= O

(1
t

)
.

APPENDIX III
THE PROOF IN THE SWITCHING TOPOLOGY CASE

A. The proof of Lemma 8
Repeating the analysis process in Appendix I-A, we can

conclude that

δ(t) =(IN ⊗ Ã− γ

t
Lm(t−1) ⊗BK2)δ(t− 1)

+
γ

t
(JNWm(t−1) ⊗B)ε̂(t− 1), (C1)

and

V (t) =E[δ̂T (t− 1)(IN − γ

t
T−1
G Lm(t−1)TG)

2δ̂(t− 1)]

+
2γ

t
E[δ̂T (t− 1)(IN − γ

t
T−1
G Lm(t−1)TG)

· (T−1
G JNWm(t−1))ε̂(t− 1)] +O

( 1

t2

)
. (C2)

It can be seen that the only differences between (A1) and (C1),
(A2) and (C2) are that the fixed matrices L and W have been
modified into switching matrices Lm(t) and Wm(t).

Then, as Remark 9 says, by the property of conditional ex-
pectation and Lemma 6, we can get that E[δ̂T (t)Lm(t)δ̂(t)] =

E[E[δ̂T (t)Lm(t)δ̂(t)|δ̂(t)]] = E[δ̂T (t)Ľδ̂(t)] + O(λt
L), thus

dealing with the switching matrix Lm(t) in the following. To
be specific, we have

V1(t) =E[δ̂T (t− 1)(IN − γ

t
T−1
G Lm(t−1)TG)

2δ̂(t− 1)]

=E[δ̂T (t− 1)(IN − 2γ

t
T−1
G Lm(t−1)TG)δ̂(t− 1)]

+O
( 1

t2

)
=E

[
δ̂T (t− 1)

(
IN − 2γ

t
T−1
G

(
Ľ+O(λt

L)
)
TG

)
δ̂(t− 1)

]
+O

( 1

t2

)
=E

[
δ̂T (t− 1)

(
IN − 2γ

t
T−1
G ĽTG

)
δ̂(t− 1)

]
+O

( 1

t2

)
,

which is similar to the form of V1(t) in Appendix I-A.
At this point, the switching matrix Lm(t) has been trans-

formed into the fixed matrix Ľ. By repeating the proof
procedure from Lemma 2 in Appendix I-A, we can derive
the following results.

V1(t) ≤
(
1− 2γλ2

t

)
V (t− 1) +O

( 1

t2

)
, (C3)

V2(t) ≤
γ

t

(
λ2

(
1− 2γλ2

t

)
V (t− 1) +

λG

λ2
R(t− 1)

)
+O(

1

t2
),

(C4)

where the definition of λG = max
1≤i≤h

{∥T−1
G JNWi∥2} is dif-

ferent with the fixed topology case and λ2 is the minimum
non-negative eigenvalue of the union topology G′.

Combining (C2)-(C4), we have

V (t) ≤
(
1− γλ2

t

)
V (t− 1) +

γλG/λ2

t
R(t− 1) +O

( 1

t2

)
,

which is consistent with the fixed topology case.
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B. The proof of Lemma 9

Changing the fixed matrices L,W into Lm(t),Wm(t) and
Pm(t) and repeating the analysis process in Appendix I-B, we
can conclude that

R(t) =E[∥ε̂(t)∥2]

=E
[∥∥∥ΠM

{
ẑ(t− 1) +

β

t
Pm(t)

(
F(C − ẑ(t− 1))

− s(t)
)}

− (Q⊗K2)x(t)
∥∥∥2]

=E
[
ε̂T (t− 1)

(
Id −

γ

t
QWm(t−1)

)T (
Id −

γ

t
QWm(t−1)

)
· ε̂(t− 1)

]
+

2γ

t
E
[
ε̂T (t− 1)

(
Id −

γ

t
QWm(t−1)

)T
Q

· Lm(t−1)TGδ̂(t− 1)
]
+

2β

t
E
[
ε̂T (t− 1)

(
Id −

γ

t
Q

·Wm(t−1)

)T
Pm(t)

(
F
(
C − ẑ(t− 1)

)
− s(t)

))]
+O

( 1

t2

)
. (C5)

Denote the first, second, and third items of (C5) as R1(t),
R2(t), and R3(t), respectively, i.e., R(t) ≤ R1(t) + R2(t) +
R3(t) +O

(
1
t2

)
. Then, we have

R1(t) ≤
(
1 +

γ
√
λQW

t

)2
R(t− 1), (C6)

where λQW = max
1≤i≤h

{∥QWi∥2} is different with the fixed

topology case.
Similarly to (A7), we can get that

R2(t) ≤
γ

t

(λQLλ2

λG

(
1 +

γ
√
λQW

t

)2
R(t− 1) +

λG

λ2
V (t− 1)

)
,

(C7)

where λQL = max
1≤i≤h

{∥QLiTG∥2} and λ2 are different with

(A7).
Subsequently, using the conclusion in Appendix I-B, since∑h
i=1 πiPi ≥ πminIN , it can be seen that

R3(t) =− 2β

t
E
[
ε̂T (t− 1)Pm(t)diag

(
f⃗(ζ(t))

)
ε̂(t− 1)

]
+O

( 1

t2

)
=− 2β

t
E
[
ε̂T (t− 1)(

h∑
i=1

πiPi)diag
(
f⃗(ζ(t))

)
ε̂(t− 1)

]
+O

( 1

t2

)
≤− 2βfMπmin

t
R(t− 1) +O

( 1

t2

)
. (C8)

Considering (C5) with (C6)-(C8), we can obtain that

R(t) ≤
(
1− 2βfMπmin − γα

t

)
R(t− 1) +

γλG/λ2

t
V (t− 1)

+O
( 1

t2

)
,

which has a new constant πmin that corresponding with the
switching topologies.

REFERENCES

[1] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and
switching networks,” IEEE Transactions on Automatic control, vol. 52,
no. 5, pp. 863–868, 2007.

[2] X. Fang and L. Xie, “Distributed formation maneuver control using
complex laplacian,” IEEE Transactions on Automatic Control, vol. 69,
no. 3, pp. 1850–1857, 2023.

[3] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Stable flocking of
mobile agents, part i: Fixed topology,” in Proceedings of the 42nd IEEE
International Conference on Decision and Control, vol. 2, pp. 2010–
2015, 2003.

[4] Y. Liu and Y. R. Yang, “Reputation propagation and agreement in
mobile ad-hoc networks,” in Proceedings of the 2003 IEEE Wireless
Communications and Networking, vol. 3, pp. 1510–1515, 2003.

[5] A. T. Chin Loon and M. N. Mahyuddin, “Network server load balancing
using consensus-based control algorithm,” in 2016 IEEE Industrial
Electronics and Applications Conference (IEACon), pp. 291–296, 2016.

[6] L. Conradt and T. J. Roper, “Consensus decision making in animals,”
Trends in Ecology & Evolution, vol. 20, no. 8, pp. 449–456, 2005.

[7] R. E. Mirollo and S. H. Strogatz, “Synchronization of pulse-coupled
biological oscillators,” SIAM Journal on Applied Mathematics, vol. 50,
no. 6, pp. 1645–1662, 1990.

[8] C. Q. Ma and J. F. Zhang, “Necessary and sufficient conditions for
consensusability of linear multi-agent systems,” IEEE Transactions on
Automatic Control, vol. 55, no. 5, pp. 1263–1268, 2010.

[9] K. You and L. Xie, “Network topology and communication data rate
for consensusability of discrete-time multi-agent systems,” IEEE Trans-
actions on Automatic Control, vol. 56, no. 10, pp. 2262–2275, 2011.

[10] Y. Su and J. Huang, “Stability of a class of linear switching systems
with applications to two consensus problems,” IEEE Transactions on
Automatic Control, vol. 57, no. 6, pp. 1420–1430, 2011.

[11] G. Gu, L. Marinovici, and F. L. Lewis, “Consensusability of discrete-
time dynamic multiagent systems,” IEEE Transactions on Automatic
Control, vol. 57, no. 8, pp. 2085–2089, 2011.

[12] S. Wang, A. Polyakov, M. Li, G. Zheng, and D. Boutat, “Optimal
rejection of bounded perturbations in linear leader-following consen-
sus protocol: invariant ellipsoid method,” Science China Information
Sciences, vol. 67, no. 8, Art. 180202, 2024.

[13] W. Ren, R. W. Beard, and D. B. Kingston, “Multi-agent kalman con-
sensus with relative uncertainty,” in Proceedings of the 2005 American
Control Conference, pp. 1865–1870, 2005.

[14] M. Y. Huang and J. H. Manton, “Stochastic consensus seeking with mea-
surement noise: Convergence and asymptotic normality,” in Proceedings
of the 2008 American Control Conference, pp. 1337–1342, 2008.

[15] T. Li and J. F. Zhang, “Mean square average-consensus under measure-
ment noises and fixed topologies: Necessary and sufficient conditions,”
Automatica, vol. 45, no. 8, pp. 1929–1936, 2009.

[16] T. Li and J. F. Zhang, “Consensus conditions of multi-agent systems with
time-varying topologies and stochastic communication noises,” IEEE
Transactions on Automatic Control, vol. 55, no. 9, pp. 2043–2057, 2010.

[17] L. Cheng, Z. G. Hou, and M. Tan, “A mean square consensus protocol
for linear multi-agent systems with communication noises and fixed
topologies,” IEEE Transactions on Automatic Control, vol. 59, no. 1,
pp. 261–267, 2014.

[18] Y. P. Wang, L. Cheng, W. Ren, Z. G. Hou, and M. Tan, “Seeking consen-
sus in networks of linear agents: communication noises and markovian
switching topologies,” IEEE Transactions on Automatic Control, vol. 60,
no. 5, pp. 1374–1379, 2015.

[19] L. Cheng, Y. P. Wang, W. Ren, Z. G. Hou, and M. Tan, “On conver-
gence rate of leader-following consensus of linear multi-agent systems
with communication noises,” IEEE Transactions on Automatic Control,
vol. 61, no. 11, pp. 3586–3592, 2016.

[20] Y. P. Wang, L. Cheng, Z. G. Hou, M. Tan, C. Zhou, and M. Wang, “Con-
sensus seeking in a network of discrete-time linear agents with com-
munication noises,” International Journal of Systems Science, vol. 46,
no. 10, pp. 1874–1888, 2015.

[21] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,”
Communications of the ACM, vol. 43, no. 5, pp. 51–58, 2000.
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